metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Li-Hua Huo,^a Shan Gao,^a Shi-Xiao Xu,^a Hui Zhao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.006 Å R factor = 0.028 wR factor = 0.063 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Polymeric diaqua(naphthalene-2,7-disulfonato)barium(II)

The Ba^{II} ion in the title compound, $[Ba(C_{10}H_6O_6S_2)(H_2O)_2]_n$, is eight-coordinate in a dodecahedral geometry. The coordinated water molecules link the Ba^{II} ion and the dianion into a three-dimensional network structure.

Received 28 July 2004 Accepted 5 August 2004 Online 13 August 2004

Comment

Organosulfonate anions have recently been examined in the context of extended architectures in their metal derivatives (Côté & Shimizu, 2003). The structural chemistry of the organic salts is also rich; for example, naphthalene disulfonates feature prominently as building blocks in hydrogenbonded supramolecular architectures (Ng, 2003; Sakwa & Wheeler, 2003). With the main-group derivatives, reports on barium salts are limited (Cai et al., 2001; Chandler et al., 2002; Dalrymple & Shimizu, 2002; Gunderman et al., 1997). Owing to the large size of the Ba²⁺ cation (Shannon, 1976), the coordination geometry is usually not regular.

The title compound, (I), with naphthalene-2,7-disulfonate exists as a diagua compound (Fig. 1); there are eight O atoms surrounding the Ba^{II} ion, and the geometry is, expectedly, irregular (Fig. 2). The coordinated water molecules link the Ba^{II} ion and the dianion into a three-dimensional network structure. The geometry of monoaqua barium naphthalene-1,5-disulfonate is also irregular; it approximates a square antiprism (Fig. 3).

Experimental

An aqueous solution (100 ml) of sodium 2,7-naphthanedisulfonate (6.64 g, 20 mmol) was passed through an ion-exchange column. Barium chloride dihydrate (3.66 g, 15 mmol) was added to the filtered solution. The barium salt separated as crystals after more than a week.

Crystal data

$[Ba(C_{10}H_6O_6S_2)(H_2O)_2]$	Mo $K\alpha$ radiation
$M_r = 459.64$	Cell parameters from 12 090
Orthorhombic, Pna2 ₁	reflections
a = 13.298 (1) Å	$\theta = 3.7-27.4^{\circ}$
b = 19.333 (3) Å	$\mu = 3.22 \text{ mm}^{-1}$
c = 5.3590(5) Å	T = 295 (2) K
$V = 1377.7 (3) \text{ Å}^3$	Block, colorless
Z = 4	$0.38 \times 0.26 \times 0.18 \text{ mm}$
$D_{\rm r} = 2.216 {\rm Mg} {\rm m}^{-3}$	

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1

ORTEPII (Johnson, 1976) plot of a portion of the structure of $[(C_{10}H_6O_6S_2)(H_2O)_2Ba]_n$. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes are as given in Table 1.

Data collection

Rigaku R-AXIS RAPID	2993 independent reflections
diffractometer	2623 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.038$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -17 \rightarrow 17$
$T_{\min} = 0.379, \ T_{\max} = 0.595$	$k = -25 \rightarrow 25$
12 606 measured reflections	$l = -6 \rightarrow 6$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.063$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0372P)^{2} + 0.576P]$ where $P = (F^{2} + 2F^{2})/3$
S = 1.04 2993 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.99 \text{ e} \text{ Å}^{-3}$
202 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent and constrained refinement	Absolute structure: Flack (1983), 1265 Friedel pairs Flack parameter = 0.02 (2)

Table 1

Selected geometric parameters (Å, °).

Ba1-O1	2.794 (3)	Ba1-O5 ^{iv}	2.736 (4)
Ba1-O2 ⁱ	2.653 (3)	Ba1-O1w	2.801 (3)
Ba1-O3 ⁱⁱ	2.792 (3)	Ba1-O2w	2.895 (6)
Ba1-O4 ⁱⁱⁱ	2.696 (3)	Ba1 $-O2w^v$	3.029 (6)
$\Omega_1 = Ba_1 = \Omega_2^i$	105.9 (1)	O3 ⁱⁱ -Ba1-O5 ^{iv}	789(1)
$O1-Ba1-O3^{ii}$	74.1 (1)	$O3^{ii}$ -Ba1-O1w	137.9 (1)
O1-Ba1-O4 ⁱⁱⁱ	147.8 (1)	O3 ⁱⁱ -Ba1-O2w	128.4 (1)
O1-Ba1-O5 ^{iv}	136.7 (1)	$O3^{ii}$ -Ba1- $O2w^{v}$	64.0 (1)
O1-Ba1-O1w	78.6(1)	O4 ⁱⁱⁱ -Ba1-O5 ^{iv}	72.3 (1)
O1-Ba1-O2w	75.3 (1)	$O4^{iii}$ -Ba1-O1W	82.3 (1)
$O1-Ba1-O2w^v$	61.3 (1)	O4 ⁱⁱⁱ –Ba1–O2w	74.4 (1)
O2 ⁱ -Ba1-O3 ⁱⁱ	76.1 (1)	$O4^{iii}$ -Ba1-O2 w^{v}	136.7 (1)
O2 ⁱ -Ba1-O4 ⁱⁱⁱ	75.3 (1)	$O5^{iv}$ -Ba1-O1w	101.0(1)
O2 ⁱ -Ba1-O5 ^{iv}	99.7 (1)	$O5^{iv}$ -Ba1-O2w	146.6 (1)
$O2^{i}-Ba1-O1w$	143.1 (2)	$O5^{iv}$ -Ba1-O2 w^{v}	76.5 (1)
$O2^i - Ba1 - O2w$	73.7 (1)	O1w-Ba1-O2w	72.2 (1)
$O2^{i}$ -Ba1-O2 w^{v}	140.0 (1)	$O1w-Ba1-O2w^{v}$	74.9 (1)
O3 ⁱⁱ -Ba1-O4 ⁱⁱⁱ	134.9 (1)	$O2w-Ba1-O2w^v$	129.5 (1)

Symmetry codes: (i) 1 - x, 1 - y, $z - \frac{1}{2}$; (ii) 1 - x, 1 - y, $\frac{1}{2} + z$; (iii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $z - \frac{1}{2}$; (iv) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} + z$; (v) x, y, 1 + z.

The water H atoms were located and isotropically refined with the O-H and H···H distances restrained to 0.85 (1) and 1.39 (1) Å, respectively. All other H atoms were placed in calculated positions [aromatic C-H = 0.93 Å], and were included in the refinement in the riding-model approximation. U_{iso} values of all H atoms were set equal to $1.2U_{eq}$ (parent atom). The Ba···H distances for each water molecule were restrained to be equal within 0.01 Å. The highest peak in the difference map was located 0.98 Å from atom Ba1.

Dodecahedral geometry of the Ba atom in [(C10H6O6S2)(H2O)2Ba]n.

Square antiprismatic geometry of the Ba atom in $[C_{10}H_6-1,5-(SO_3)_2](H_2O)Ba$. Atomic coordinates are taken from Cai *et al.* (2001). [Symmetry codes: (i) $x, \frac{3}{2} - y, z$; (ii) x, y, z - 1; (iii) $x, \frac{3}{2} - y, z - 1$; (iv) $x - \frac{1}{2}, y, \frac{3}{2} - z$; (v) $x - \frac{1}{2}, \frac{3}{2} - z$; (vi) $\frac{1}{2} - x, y, \frac{3}{2} - z$.]

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the National Natural Science Foundation of China (No. 20101003), the Educational Committee Foundation of Heilongjiang Province, Heilongjiang University and the University of Malaya for supporting this study.

References

Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. & Chen, X.-M. (2001). Acta Cryst. B57, 520–530.

Chandler, B. D., Côté, A. P., Cramb, D. T., Hill, J. M. & Shimizu, G. K. H. (2002). J. Chem. Soc. Chem. Commun. pp. 1900–1902.

- Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-64.
- Dalrymple, S. A. & Shimizu, G. K. H. (2002). Chem. Eur. J. 8, 3010-3015.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gunderman, B. J., Kabell, I. D., Squattrito, P. J. & Dubey, S. N. (1997). Inorg. Chim. Acta, 258, 237–246.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
- Ng, S. W. (2003). Acta Cryst. E59, o1028-o1029.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, Texas, USA.
- Sakwa, S. & Wheeler, K. A. (2003). Acta Cryst. C59, 0332-0333.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-753.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.